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Abstract
Improved daily precipitation estimations were attempted using the parameter-elevation regressions on a parameter-elevation
regression on independent slopes model (PRISM) with inverse-distance weighting (IDW) and a precipitation-masking algorithm
for precipitation areas. The PRISM (PRISM_ORG) suffers two overestimation problems when the daily precipitation is estimat-
ed: overestimation of the precipitation intensity in mountainous regions and overestimation of the local precipitation areas. In
order to solve the problem of overestimating the precipitation intensity, we used the IDW technique that employs the same input
stations as those used in the PRISM regression (PRISM_IDW). A precipitation-masking algorithm that selectively masks the
precipitation estimation grid points was additionally applied to the PRISM_IDW results (PRISM_MSK). For 6 months from
March to August 2012, daily precipitation data were produced in a horizontal resolution of 1 km based on the above two
experiments and PRISM_ORG. Afterwards, each experiment was evaluated for improvements. The monthly root mean squared
errors (RMSEs) of PRISM_IDWand PRISM_MSK were reduced by 0.83 mm/day and 0.86 mm/day, respectively, compared to
PRISM_ORG.
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1 Introduction

As computation performance improves, the production of
grid-type meteorological data of higher resolution has become
possible. In recent years, high-resolution meteorological data
has been widely utilized not only in meteorological areas but
also in the fields of agriculture, hydrology, engineering, and
the economy (Daly et al. 2002; Daly et al. 2003). Despite this
high utilization, it remains challenging to derive detailed me-
teorological data from observational data due to spatial and
temporal heterogeneities. In particular, although around 70%
of the land in South Korea consists of mountainous terrain,
most observation stations are concentrated in urban regions

due to economic and technical limitations (Hong et al. 2007;
Im and Ahn 2011).

In order to overcome the limitations of observational data
and allow for easier utilization, several studies have investi-
gated how to produce detailed grid-type data and information
(Ahn et al. 2012; Gerelchuluun and Ahn 2014). The methods
that can produce detailed grid-type meteorological informa-
tion can be divided into dynamical and statistical methods. A
dynamical method that uses a regional climate model has the
advantage of producing physically and dynamically balanced
data. However, the method has some limitations such as the
fact that a regional climate model requires considerable inte-
gration time and significant storage to produce high-resolution
data (Chen et al. 2012), and that the model outputs may in-
clude systematic errors (Ahn et al. 2012; Jo and Ahn 2014;
Ahn and Lee 2016; Lee and Ahn 2018). Due to these draw-
backs, a statistical method is also often used as an efficient
method that produces meteorological and climate data at a
high resolution (e.g., Daly 2006; Brunetti et al. 2013).

For statistical methods that produce high-resolution grid-
point data from observations, some studies have been con-
ducted on objective analysis (e.g., Barnes 1964; Cressman
1959). A statistical objective analysis assumes that the
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homogeneity of climate variables decreases over distance and
that the estimated value at each grid point is inversely propor-
tional to the square of the distance of the adjacent observa-
tional data. A Kriging (Krige 1951) technique that considers
not only the distances but also the other variables that have a
linear relationship with the estimation variables is also fre-
quently used to interpolate meteorological data. Particularly,
surface data are significantly affected by topographical fea-
tures (Johnson et al. 2000; Perry and Konrad 2006). A hypso-
metric technique (Ahrens 2003) and a parameter-elevation
regression on independent slopes model (PRISM) (Daly
et al. 1994, 2002; Daly 2006) are two of the typical objective
analysis methods that consider geographical features. In par-
ticular, since PRISM has a relatively low dependence on the
adjacent meteorological data compared to other methods, it
may be usefully employed to estimate high-resolution grid
data from observational data that are distributed spatially
inhomogeneously and coarsely (Ahn et al. 2014).

PRISM is a high-resolution model for grid-type climate
data estimations developed by Oregon State University. The
model not only applies distance weighting but also additional
geomorphological factors such as the topographic altitude,
topographic facet, and coastal proximity. Hong et al. (2007)
proposed Korean PRISM (K-PRISM) in which regression
variables and weights suitable for climate data estimations in
South Korea were employed based on improvements to
PRISM. They estimated the temperature data at a 5-km × 5-
km resolution in South Korea using K-PRISM. Shin et al.
(2008) also conducted a study on a grid-type estimation of
precipitation in South Korea with the same resolution as
Hong et al. (2007) using K-PRISM. Kim et al. (2012) estimat-
ed the daily precipitation with a 1-km × 1-km resolution in
South Korea usingMK-PRISM (modified K-PRISM) and im-
proved the precipitation area estimations of K-PRISM.

Although these studies improved high-resolution grid-type
climate data estimations, uncertainties remain. In particular, it
is more difficult to estimate the spatial distribution and the
intensity of precipitation compared to other variables such as
temperature, due to the regional seasonal and topographic
characteristics. In our study, experiments are conducted to
improve the daily precipitation estimations produced from
the PRISM (PRISM_ORG) by correcting the overestimation
of precipitation intensity and areas, and the results were
verified.

2 Data and methods

2.1 Data

The data used in this study consisted of observational and
geographic information system (GIS) data. For the observa-
tional data, the automated synoptic observation system

(ASOS) and the automatic weather station (AWS) were
employed. For the GIS data, the ASTER Global Digital
Elevation Model version 2 (ASTGTM2) (Tachikawa et al.
2011) was used.

Observations provided by the Korean Meteorological
Administration were used as the input and verification data
in PRISM. Although 89 ASOS stations and 599 AWS sites
collected observation data, the actual PRISM input data were
selectively derived from 72 of the ASOS stations and 352 of
the AWS sites (Fig. 1). The selection criteria for the stations
were as follows. Among the ASOS stations, 72 stations oper-
ating continuously since 1973 were selected by considering
the homogeneity of the input data. From the AWS sites, 352
were chosen by excluding sites where significant temporal
gaps occurred in the measurement data or where the observa-
tion station locations were changed. The location of the points
used for verification is also an important factor to consider. In
this study, the 22 stations in the AWS used for validation were
selected where PRISM input data were not used (Fig. 1). The
selection criteria for the validation stations included the re-
quirement that the stations must have had 10 or fewer days
without missing measurements and that theminimum distance
to the other stations used for the input data was more than 10
km.

For the digital elevation map, ASTER Global Digital
Elevation Map Version2 (ASTGTM2) data developed and
produced jointly by the USA and Japan as the deliverable of
the Global Earth Observation System project was used. A 30-
m resolution digital elevation map was converted to a 1-km
resolution map. The topographic facets and coastal proxim-
ities calculated from this map were used as the PRISM input
data. Sixteen directions (N, NNE, NE, NEE, E, SEE, SE, SSE,
S, SSW, SW, SWW, W, NWW, NW, and NNW) and a flat for
the topographic facets are utilized as used in Ahn et al. (2014),
so topographic facets may have 17 directions. Coastal prox-
imity refers to the degree that the same oceanic climate affects
the data. The coastal proximity was classified into six catego-
ries in this study according to the shortest distances from the
coast (less than 10 km, more than 10 km, less than 20 km, and
over 20 km) and topographic altitude (less than 200 m and
over 200 m).

2.2 PRISM_ORG: original PRISM

The basic precipitation estimation method used in this
study was from the PRISM method developed by Daly
et al. (1994, 2002) and Daly (2006). PRISM uses differ-
ences between the geographical information obtained at
observation stations within a radius of influence in order
to estimate the precipitation amount at each grid point,
thereby assigning a weight to each observation station
and estimating a value at each grid point by setting an
individual linear regression equation for each grid point.
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Here, the linear regression equation as a function of alti-
tude is as follows:

bY ¼ bβ0 þ bβ1X ð1Þ

where Ŷ denotes the estimated precipitation value at the

grid point, and β̂0 and β̂1 refer to the intercept and the slope
in the regression equation, respectively. X refers to the altitude
at the target grid point. Here, the weight used during the setup

of the β̂0 and β̂1 regression coefficients is determined by the
following differences in distance, altitude, topographic facet,
and coastal proximity:

W ¼ f Wd ;Wz;W f ;Wp
� � ð2Þ

whereW is the total weight, andWd andWz are the weights
due to differences in distance and altitude, whileWf andWp are
the weights due to differences in topographic facet and coastal
proximity. Here, the selection of the total weight is set as that

used in K-PRISM from a study by Hong et al. (2007) and the
equation is as follows:

W ¼ FdW dð Þ þ FzW zð Þ½ �W fð ÞW pð Þ ð3Þ

Here, Fd and Fz are the weights of the distance and altitude
that were set to Fd = 0.8 and Fz = 0.2, as in Hong et al. (2007).
The other weights correspond to the weights of the difference
in distance (W(d)), in altitude (W(z)), in topographic facet
(W( f )), and in coastal proximity (W(p)) (Hong et al. 2007).

The observation stations used to estimate the precipitation at
each grid point were those within 30 km of the grid point. The
determination of the radius of influence is particularly important
for estimating local- and regional-scale precipitation. Increasing
the influence radius around the grid points where we want to
estimate precipitation has the advantage of increasing the number
of observation points included within the radius, but also the
disadvantage of weakened local climatological characteristics
of precipitation influenced by topography. The 30-km influence

Mean
distance

Maximum
distance

Minimum
distance

ASOS 33.0km 144.6km 13.7km

AWS 12.5km 53.0km 1.8km

Fig. 1 Topography and spatial
distribution of the ASOS (blue
circles) and AWS (red triangles)
stations used for the PRISM input
data along with the stations used
for validation (pink circles with
crosses)
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of radius utilized in this study is the one used by K-PRISM,
which is optimized in consideration of South Korea’s geography
and climate, and by many prior studies (e.g., Hong et al. 2007;
Shin et al. 2008; Kim et al., 2011). However, with fewer than five
observation stations within the radius of influence, the radius of
influence is increased by 5 km up to 50 km (Hong et al. 2007;
Ahn et al. 2014). The individual weights are calculated at the
observation stations within the radius of influence. Thus, the
regression coefficient used in Eq. (2) has the following weighted
regression coefficients:

bβ1 ¼
∑n

i¼1Wi xi−x
� �

yi−y
� �

∑n
i¼1 xi−x

� �2
bβ0 ¼ y− bβ1x ð4Þ

x ¼ ∑n
i¼1Wixi

∑n
i¼1Wixi

; y ¼ ∑n
i¼1Wiyi
∑n

i¼1Wi
ð5Þ

whereWi refers to the weight of the ith observation station
among n observation stations included within the radius of
influence. The more similar number of observation stations
at which the geographical information is similar to that of
the target grid, the larger the weight assigned to the weighted
regression coefficient, and hence the greater the influence on
the estimation of precipitation at the target grid point.

Among the regression coefficients used in the PRISM grid

point estimation, the slope of β̂1

� �
may be abnormally large or

small if the altitudes and distances of the observation stations
from some of the target grid points within the radius of influ-
ence are not variably distributed and this may result in unre-
alistic estimations (Shin et al. 2008). Ahn et al. (2014) calcu-
lated the daily temperature lapse rate and standard deviation

averaged over 40 years from 1973 to 2012, while also limiting
the upper and lower limitations of the slope of the regression
equation by using the result obtained by calculating a 10-day
moving average to remove small variabilities. They also lim-
ited the maximum and minimum values of the slope using the
reduction rate of the daily mean precipitation according to the
altitudes averaged over 40 years by applying the method used
in Ahn et al. (2014). We set the maximum and minimum
values of the slope to + 0.5 σ and − 0.5 σ, respectively (Fig.
2). Here, σ refers to the standard deviation of the daily mean
precipitation lapse rate over the period of 40 years. The Y-axis
of Fig. 2 is the lapse rate in total daily mean precipitation over
a total of 40 years from 1973 to 2012, in mm/day. The mag-
nitude of the lapse rate is similar to that shown in various prior
studies (e.g., Hong et al. 2007; Sin et al., 2008; Kim et al.,
2011). In our PRISM, we used the above input data and
weights to estimate the daily precipitation in South Korea
from March 1 to August 31, 2012.

2.3 Experimental design

2.3.1 PRISM_IDW: estimation of precipitation intensity

PRISM produces more accurate estimates because it considers
the topographic characteristics more variously than other ob-
jective analysis methods do. Precipitation is in general affect-
ed by topography; in other words, the distribution of precipi-
tation depends on the slopes of the mountains. This mountain
effect on precipitation has been reported in previous studies
(e.g., Henry 1919; Smith 1979). However, in some mountain-
ous regions, PRISM results have overestimated precipitation.

Fig. 2 Daily mean of the
precipitation change rate with
altitude (ΔP/Δz) over 40 years
from 1973 to 2012 in South Korea
(bold line) and its 0.5 standard
deviations (bar) (a 10-day moving
average was applied) (unit: mm/
day)
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To solve this problem, we used IDW (Shepard 1968), an
objective analysis method that does not consider the topo-
graphical effect. The IDW method determines precipitation
at the interpolating point by assigning larger weights to obser-
vation stations closer to the target grid. This method has been
widely used in various research areas and practices because it
is one of the simplest among the available objective analysis
methods (Daly et al. 2002).

The IDWestimation equation defined by Shepard (1968) is
as follows:

x̂¼ ∑n
i¼1Wixi
∑n

i¼1Wi

� �
where Wi ¼ 1

d2
ð6Þ

where x̂ refers to an estimate at the target grid point, Wi is
the weight of the ith station, and xi is the observed value at the
ith station that is used for the target grid point estimation. The
weight at the ith station is inversely proportional to the square
of the distance (d) between the target grid point and the ith
observation station. The sum of the weights as shown in Eq.
(6) is 1 for observation points within the radius.

In this study, the experiments were designed to detect
changes in the precipitation intensity by averaging the precip-
itation calculated from the IDW and the precipitation

estimated from PRISM_ORG. The same stations in the
PRISM radius of influence were used in the IDW to maintain
the objectivity of the estimates. A schematic diagram of the
experiment design is shown in Fig. 3. The above experiment is
named PRISM_IDW, which is performed over the same
period.

2.3.2 PRISM_MSK: estimation of precipitation area

In contrast with other meteorological variables, daily precipi-
tation can exhibit an uneven spatial distribution when the pre-
cipitation occurs locally. If this local precipitation is estimated
using PRISM, unrealistic precipitation overestimations within
the radius of influence can occur. This problem is not evident
in the estimations of monthly precipitation distributed over
sufficiently large areas, but it is revealed when the daily pre-
cipitation is estimated at the observation stations that are dis-
tributed locally.

Thus, a precipitation-masking algorithm (Fig. 4) was used in
PRISM_MSK to correct for the estimation of the precipitation
areas. In this study, among the grid estimates obtained from
PRISM_IDW, a precipitation-masking algorithm was applied
to the grid points estimated to have precipitation, thereby re-
ducing the overestimated precipitation areas (Fig. 3).

If the distance between the grid point estimated as the pre-
cipitation area and the closest precipitation observation point
is less than 12.5 km, and if no precipitation occurs at three or
more observation stations out of the closest five stations, then
the precipitation-masking algorithm masks the precipitation
estimated for the corresponding grid points. If the distance is
12.5 km or greater, and if no precipitation occurs at two or
more observation stations out of the five closest stations, the
algorithm masks the corresponding grid points. Here, 12.5
km, used as the threshold distance for estimating precipitation,
is the distance among the average observation points of ASOS
+ AWS (Fig. 1). The presence of precipitation at a grid point is
determined according to its distance from the station where
the precipitation is observed as well as whether precipitation
occurs or not at the surrounding nearby observation stations,
thereby improving the overestimation problem for a precipi-
tation area for a more realistic estimation. PRISM_MSK also
conducted precipitation estimations for the same period, i.e.,
from March 1 to August 31, 2012.

3 Results and validations

3.1 Results

PRISM_ORG and the two improved PRISMs were examined
through the experiments, thereby producing three results.
These experiments provided the grid-type daily precipitation
at a 1-km resolution for 184 days fromMarch 1 to August 31,Fig. 3 Process diagram of PRISM and the experiments

Improvement of daily precipitation estimations using PRISM with inverse-distance weighting



2012. During this period, only less than 6% (12 days) of total
cases were not improved by the application of the newmethod
in terms of RMSE (data not shown). The precipitation in the

Korean Peninsula can be clearly divided into two types ac-
cording to the seasons. That is, the precipitation in summer
and that in the other three seasons are mainly caused by the

(a) Observa�on (2012.08.22)           
AVE=31.2

(b) PRISM_ORG (2012.08.22)                
AVE=34.3

(c) PRISM_IDW (2012.08.22)            
AVE=31.8

(d) PRISM_MSK (2012.08.22)            
AVE=31.8

(e) RMSE_PRISM_ORG 
(2012.08.22)      AVE=16.8

(f) RMSE_PRISM_IDW 
(2012.08.22) AVE=13.2

(g) RMSE_PRISM_MSK 
(2012.08.22) AVE=13.2
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Fig. 5 Spatial distribution of the daily precipitation on August 22, 2012
for the a observed precipitation, b precipitation estimated by PRISM_
ORG, c precipitation estimated in PRISM_IDW, and the d precipitation
estimated in PRISM_MSK. Root mean-squared errors (RMSEs) are

shown as markers at each validation station for the results of e PRISM_
ORG, f PRISM_IDW, and g PRISM_MSK. Spatially averaged values are
shown in the top right of each panel (unit: mm/day)

grid point
where precipitation

is estimated

distance to

the nearest station

where precipitation

is observed

among 

5 nearest stations,

number of stations 

which observed

precipitation

< 12.5km 

Not Mask Out

≥12.5km 

≤ 3

≥ 4
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5 nearest stations,

number of stations 

which observed

precipitation

≤ 2

Mask OutNot Mask Out

≥ 3

Fig. 4 Precipitation masking
algorithm used in PRISM_MSK
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local static instability and the baroclinic instability associated
with the synoptic system, respectively. Thus, among the 184
days, for easy analysis of the results, we selected the well-
estimated cases for spring (March 22) and summer (August
22) for analyses and discussions. Figure 5 shows three kinds
of result for the precipitation estimations (b–d) on August 22,
2012, with the observation data distribution (a) and root mean
squared errors (RMSEs) from the validation stations for the
three results (e–g). All of the results from PRISM_ORG,
PRISM_IDW, and PRISM_MSK showed a similar distribu-
tion as the observations. The PRISM_ORG results (b) exhib-
ited the abovementioned overestimation problem for the pre-
cipitation. Figure 5 e shows that mountainous areas such as
the Gangwon Province and the Jiri Mountain had high
RMSEs of 36.1 mm/day and 50.8 mm/day, respectively. The
mountain effect, which is overestimated, decreased in
PRISM_IDW, as shown in Fig. 5c, and the RMSEs in the
mountainous areas were reduced to be 30.1 mm/day and
34.6 mm/day, respectively (Fig. 5f). For PRISM_MSK,
shown in Fig. 5d, the result showed no significant differences
compared to PRISM_IDW. The reason is, when the

precipitation covers the entire area, the precipitation-masking
algorithm does not change the precipitation area.

Figure 6 shows the precipitation estimation results from
March 22, 2012. Figure 6 a exhibits the observation precipi-
tation distributions, in which overall, the rainfall occurred in
the southern region, whereas the local rainfall occurred in the
central inland region. PRISM_ORG, as shown in Fig. 6b,
shows the overestimated precipitation areas as the shape of
the radius of influence for the local rainfall in the central in-
land region. PRISM_IDW, as shown in Fig. 6c, estimates a
wider area of precipitation than does PRISM_ORG, shown in
Fig. 6b. This is due to the IDWmethod that was used to adjust
the precipitation intensity. PRISM_MSK, as shown in Fig. 6d,
shows that the overestimated precipitation areas revealed in
the previous two results were reduced through the
precipitation-masking algorithm. The results of the RMSEs
(Fig. 6e–g) show that PRISM_ORG and PRISM_IDW, which
incorrectly estimated precipitation around the central inland
local precipitation area due to overestimation of the precipita-
tion area, had RMSEs of 0.5 mm/day and 0.2 mm/day, respec-
tively. On the other hand, in PRISM_MSK, the incorrect

(a) Observa�on (2012.03.22)           
AVE=13.5

(c) PRISM_IDW (2012.03.22)            
AVE=11.0

(d) PRISM_MSK (2012.03.22)            
AVE=12.6

(f) RMSE_PRISM_IDW 
(2012.03.22)   AVE=1.9

(g) RMSE_PRISM_MSK 
(2012.03.22)   AVE=1.9

(b) PRISM_ORG (2012.03.22)                
AVE=34.3

(e) RMSE_PRISM_ORG 
(2012.03.22)      AVE=16.8
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Fig. 6 Spatial distribution of the daily precipitation on March 22, 2012
for the a observed precipitation, b precipitation estimated by PRISM_
ORG, c precipitation estimated in PRISM_IDW, and the d precipitation
estimated in PRISM_MSK. Root mean squared errors (RMSEs) are

shown as markers at each validation station for the results of e PRISM_
ORG, f PRISM_IDW, and g PRISM_MSK. Spatially averaged values are
shown in the top right of each panel (unit: mm/day)
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precipitation was accurately masked, thereby reducing the
RMSE to 0 mm/day.

3.2 Validations

3.2.1 RMSE

Quantitative comparisons were conducted using a box plot to
determine the RMSE distribution of the daily precipitation
estimations for the above three results (Fig. 7). Each box refers
to the distribution of the average RMSE of the daily precipi-
tation that occurred within a month. The maximum value, the
top 25%, the mean value, the bottom 25%, and the minimum
value are all expressed in each box plot, which represents the
analysis results from March to August 2012 for the three
experiments.

The precipitation from March to June was lower than that
from July to August, resulting in a low RMSE from March to
June. Also, a relatively larger RMSE in July and August was
observed due to higher precipitation. The mean values showed
considerably improved RMSE results compared to
PRISM_ORG over the entire period with respect to the esti-
mation results of the daily precipitation from PRISM_IDW
and PRISM_MSK. PRISM_IDW showed a lower monthly
mean RMSE compared to PRISM_ORG by 0.28 mm
(March), 0.34 mm (April), 0.19 mm (May), 0.33 mm (June),
1.54 mm (July), and 2.30 mm (August) per day.
PRISM_MSK showed a lower monthly mean RMSE com-
pared to PRISM_ORG by 0.30 mm (March), 0.34 mm
(April), 0.24 mm (May), 0.40 mm (June), 1.59 mm (July),
and 2.32 mm (August) per day. The differences in the
RMSE between PRISM_IDW and PRISM_MSK were not
larger than those between the RMSE of PRISM_IDW and
PRISM_ORG, but in most months, PRISM_MSK exhibited
slightly lower than or the same RMSE as PRISM_IDW did.
The differences were 0.02 mm (March), 0.00 mm (April),

0.04 mm (May), 0.07 mm (June), 0.05 mm (July), and
0.01 mm (August) per day.

Next, the maximum RMSE results of PRISM_IDW were
decreased by 3.37 mm (March), 4.79 mm (April), 1.90 mm
(May), 2.68 mm (June), 14.70 mm (July), and 8.77 mm
(August) per day compared to PRISM_ORG. The experimen-
tal results from PRISM_MSK also decreased overall com-
pared to the PRISM_ORG results, and the decreases were
the same as those from PRISM_IDW, except for March
(3.41mm/day).

3.2.2 Scatter plot

Figures 8 and 9 show the scatter plots produced from a one-to-
one match between the 22 daily observed validation precipi-
tations (horizontal axis) and the estimated daily precipitation
from the three experiments for grid points corresponding to
each validation station (vertical axis). Each plot shows the
results for each experimental month. The coefficient of deter-
mination (R2) that can be interpreted as the proportion of the
variation of the estimation that is described or accounted for
by the regression (Wilks 2011) is also suggested by the linear
regression equation.

First, comparisons of the results between PRISM_ORG
and PRISM_IDW showed that the estimations from
PRISM_IDW matched the observational distribution more
closely overall than those from PRISM_ORG did, and the
R2 of PRISM_IDW also increased by 0.11 on average from
March to August compared to PRISM_ORG. In particular, a
relatively high proportion of values were skewed from the
regression line toward the vertical axis under PRISM_ORG
due to the precipitation overestimations. PRISM_IDW im-
proved the overestimated precipitation intensities, such that
the re-estimated values were closer to the observations. The
R2 values increased in PRISM_IDW by 0.1015 (March),
0.1061 (April), 0.1767 (May), 0.0885 (June), 0.0978 (July),
and 0.1172 (August) compared to PRISM_ORG.

PRISM_ORG PRISM_IDW PRISM_MSK

1.17 0.89 0.87 1.62 1.29 1.28 0.81 0.62 0.57 1.51 1.18 1.11 4.98 3.44 3.39 8.32 6.02 6.00

Fig. 7 Box plot of the RMSE of
PRISM_ORG, PRISM_IDW, and
PRISM_MSK for each month.
The number under each box
denotes the mean of the RMSE
for each experiment (unit: mm/
day)
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Next, in terms of the precipitation area, PRISM_MSK pre-
sented fewer estimated errors than PRISM_IDW did in the
area where the local precipitation occurred, thereby slightly
increasing the R2 value over the entire period. The R2 values
in PRISM_MSK increased by 0.0022 (March), 0.0001
(April), 0.0554 (May), 0.0029 (June), 0.0068 (July), and
0.0002 (August) compared to PRISM_IDW. Although the
numerical increases in the validation values were not

significant, the errors estimated at the precipitation grids
where no precipitation occurred (points marked on the vertical
axis) were considerably improved (origin point of the graph).

3.2.3 Contingency table

The 2 × 2 contingency table between the observed precipita-
tion and the precipitation estimated from PRISM_ORG,

Fig. 8 Scatter plots of the precipitation observed at the stations and
estimated by PRISM_ORG (left), PRISM_IDW (middle), and PRISM_
MSK (right) forMarch (top), April (middle), andMay (bottom). The solid

line is the 1:1 line and the dashed line is the linear regression line. The
linear regression equation and the R2 values are shown at the top left in
each panel
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PRISM_IDW, and PRISM_MSK are shown in Table 1. Each
number in the contingency table denotes the percentage of the
number of stations where the outputs of each experiment be-
long to a (1) hit, (2) miss, (3) false alarm, and (4) rejection
(Wilks 2011). The table consists of the precipitation or non-
precipitation event counts that occurred in the 22 validation
stations during the experimental period.

In comparison with the results of PRISM_ORG and
PRISM_IDW, the results of PRISM_IDW showed an in-
creased percentage (number) of hits from 28% (1142) to
30% (1227) and a decreased percentage (number) of misses
from 5% (209) to 3% (124). However, the percentage
(number) of false alarms increased from 9% (371) to 11%
(443) and the percentage (number) of correct rejections

Fig. 9 Scatter plots of the precipitation observed at the stations and
estimated by PRISM_ORG (left), PRISM_IDW (middle), and PRISM_
MSK (right) for June (top), July (middle), and August (bottom). The solid

line is the 1:1 line and the dashed line is the linear regression line. The
linear regression equation and the R2 values are shown at the top left in
each panel
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decreased from 58% (2326) to 56% (2254). This is attributed
to the expanded precipitation area resulting from the IDW
used in PRISM_IDW.

The results of PRISM_MSK compared to PRISM_IDW
showed that the percentage (number) of false alarms de-
creased from 11% (443) to 3% (133) and the percentage
(number) of correct rejections increased from 56% (2254)
to 63% (2564), whereas the percentage (number) of hits
decreased from 30% (1227) to 29% (1149) and the per-
centage (number) of misses increased from 3% (124) to
5% (202). Thus, PRISM_MSK showed improved results
compared to PRISM_ORG. The percentage of hits and
correct rejections increased, while the percentage of false
alarms and misses decreased. In particular, the percentage
of false alarms was reduced by more than half compared
with the results of PRISM_ORG. This means that the
overestimated precipitation area was reduced due to the
precipitation-masking algorithm applied in PRISM_MSK.

4 Discussion and summary

In this study, experiments were conducted to improve the
problems related to daily precipitation estimations using
PRISM. The target area was South Korea, and the daily
precipitation with a 1-km ×1-km resolution was estimated
for 6 months from March to August 2012 using observa-
tional data obtained from 424 stations in South Korea.
Two main problems arise when using PRISM_ORG to
estimate the daily precipitation. The first problem was
an overestimation of the precipitation intensity in moun-
tainous regions. This problem is caused by the altitude
regression coefficient that is set too loosely in areas where
the observation stations are distributed unevenly. This
problem was solved by using the IDW method, which is
an objective analysis method that does not place a weight
on altitudes, to average the precipitation intensity with the
regressed results of PRISM_ORG. As a result, the overall
RMSEs of the estimation are considerably reduced (Fig.
7), and the RMSEs caused by the overestimation at moun-
tainous regions are significantly decreased (Fig. 5).

The second problem was the overestimation of local
precipitation areas. With PRISM_ORG, if local precipita-
tion occurs in an area that is smaller than the radius of
influence, the entire grid points within the radius of influ-
ence are estimated as precipitation areas. PRISM_ORG
has a problem that even areas with no observed precipi-
tation are estimated as precipitation areas. This problem
could be considerably mitigated by masking the
overestimated precipitation grid points by applying the
precipitation-masking algorithm proposed in our study,
which generated more realistic precipitation areas estima-
tions (Fig. 6). The experimental results showed that nu-
merical improvements were also observed through statis-
tical validation using the RMSE (Fig. 7), and the estima-
tion errors occurring in many grid points in the scatter
plots are reduced (Figs. 8 and 9). In addition, the numbers
of hits and correct rejections were increased and the num-
bers of false alarms and misses were reduced, as shown in
the 2 × 2 contingency table (Table 1). However, this
method may possibly regard the case of very local scale
(meso-gamma scale 2–20 km) precipitation as no-precip-
itation. That is, if the distances among the stations where
precipitation is observed are far apart and there is local-
scale precipitation among the stations, some grid points
located among the stations may be regarded as grids of
no-precipitation. Therefore, this method can be more ef-
fectively utilized if there is a fine enough observation to
detect even a meso-gamma-scale precipitation.

As mentioned in Sect. 3.1, the precipitation in the Korean
Peninsula can be clearly divided into two types according to
the seasons. That is, the precipitation in summer and that in the
other three seasons are mainly caused by the local static insta-
bility and the baroclinic instability associated with the synop-
tic system, respectively. The main purpose of this study is to
develop a method that can be more accurately applied to di-
verse cases throughout the whole year. Therefore, we deter-
mined that it would be more appropriate for the study purpose
to conduct experiments over a long period of time from spring
to summer in a particular year than to look at multiple years
for a particular month. Accordingly, the developed method
was verified through a total of 184 cases (March 1 to August

Table 1 Contingency table between the observed precipitation and estimated precipitation at each validation station. Y indicates that precipitation
occurrence was observed or estimated, and N indicates that the precipitation occurrence was not observed or estimated

PRISM_ORG PRISM_IDW PRISM_MSK

Observation Observation Observation

Estimation Y N Estimation Y N Estimation Y N

Y 28% 9% Y 30% 11% Y 29% 3%

N 5% 58% N 3% 56% N 5% 63%

Hit rate 86% 86% 92%

Improvement of daily precipitation estimations using PRISM with inverse-distance weighting



31). As discussed above, because the correction is more sen-
sitive to the scale of precipitation and distances among obser-
vations than the year of precipitation, it is believed that the
application of this method in other years will also produce
similar results.

The daily precipitations in South Korea from onlyMarch to
August 2012 were estimated and used in the experimental
study. Although the level of improvement in precipitation es-
timation is not statistically significant for the entire period and
verification points (Fig. 7), analysis of specific dates and
points showed statistically significant improvement (data not
shown). In addition, as for the spatial pattern and area of
precipitation, the proposed method shows better performance
in simulating observed precipitation, taking into account geo-
graphical features (Figs. 5d, 6d, and 8d). However, it might be
necessary to produce longer-term data by expanding the ex-
perimental period and by performing verification tests for a
more objective verification.
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